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Abstract. The density of partition function ‘temperature’ zeros for the two-dimensional 
spatially anisotropic king model in the absence of a magnetic field satisfies a linear 
homogeneous partial differential equation. A generalised form of this equation, for a 
non-zero specific heat exponent, can be derived by applying non-linear scaling to the 
expression for the specific heat as an integral over the density of zeros. 

1. Introduction 

All the mathematical features of a partition function arise from the location and 
distribution of its zeros in the complex planes of appropriate variables, usually the 
Boltzmann factors, which combine the temperature with the mechanical parameters 
determining the energy of a system. In the case of magnetic systems described by 
Heisenberg- or Ising-type Hamiltonians, the mechanical parameters are the external 
magnetic field and the exchange interaction strengths. A complete description of a 
phase transition then involves a study of zeros in two complex variables, separately 
involving the magnetic field and the interaction strength. Within the scaling-law context 
in the vicinity of a critical point, such descriptions have been proposed by Abe (1967) 
and Suzuki (1967). In particular, when the magnetic field is absent, Abe (1967) has 
shown how to obtain linear homogeneous differential equations, which are satisfied 
by the density of zeros per lattice site. These differential equations can be derived by 
applying scaling criteria directly to the general expressions for thermodynamic func- 
tions in terms of integrals over the densities of zeros. The corresponding densities of 
zeros then also acquire functional forms which are characteristic of scaling theory. 
These theories have been used to show how certain types of zero distributions give 
rise to particular forms of singular behaviour at a critical point. The functional forms 
for the densities of zeros are often constructed by analogy with known expressions 
obtained from soluble models. This approach has worked well in those cases where 
the zeros lie on lines in the complex plane of the Boltzmann factor associated with 
the interaction variable. However, when the distribution of zeros is two dimensional, 
comparison with the forms obtained from soluble models has been less extensive and 
the density functions adopted have mainly been constructed by analogy with those 
one-dimensional densities which yield the same type of critical behaviour. It therefore 
becomes especially important to place the recently derived expressions for the densities 
of the ‘temperature’ zeros (Stephenson and Couzens 1984, Stephenson 1986) of the 
two-dimensional Ising model in the absence of a magnetic field into the theoretical 
scheme of scaling-law forms and differential equations referred to above. 
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2. Density of zeros for the Ising model 

The ‘exact’ expressions for the density of zeros for the two-dimensional Ising model 
on spatially anisotropic quadratic and triangular lattices assume the general form, for 
Y>O, 

(1) 
Y 

g(x’ ’ )=4r2[det  B(X -A2y2)(Aly2-X)]1’2 

which represents a two-dimensional distribution in the neighbourhood of the relevent 
(ferromagnetic) critical point at w, in a complex variable w = w,+ x + iy = w, - X + iy. 
Here x = - X  = Re (w - w,) is negative for the Ising model near a ferromagnetic critical 
point, so X is positive. Some minor changes are needed for an antiferromagnetic 
critical point. Details of the derivation and the physical significance of the variables 
have been presented by Stephenson and Couzens (1984) and Stephenson (1986). The 
features we need to note here are 

(i)  the existence of a cusp-like region containing the zeros, with parabolic boun- 
daries intersecting at the critical point on the real axis, 

(ii) the singular nature of the density of the zeros at these boundaries, 
(iii) the factor of y = Im w in the numerator, 
(iv) the functional dependence on x and y. 

The above expression for the density of zeros indeed has a scaling-law form, as may 
be seen if we rearrange it as 

- 1  

(2) 

= Y - ‘ f ( X / y 2 )  say. (3) 

Y 
g(x’ =4.rr2{det B [ ( X / y 2 - A , ) ( A , - X / y 2 ) ] } 1 ’ 2  

Furthermore it satisfies a linear partial differential equation of homogeneous form 

ag ag g + 2x-+ y- = 0. 
ax ay (4) 

However, this equation differs from the one previously obtained by Abe, who applied 
the usual ‘linear’ scaling criteria to the integral expression for the specific heat in terms 
of a double integral over a two-dimensional density of zeros. As we will show below, 
‘quadratic’ scaling is needed for the Ising model, and the real and imaginary parts of 
the complex variable w must be scaled differently. 

3. Derivation of the differential equation 

A more general form of the above differential equation can be derived in the case 
when the specific heat exponent a is non-zero, provided the scaling criteria are applied 
separately to the real and imaginary parts of the variable w in the vicinity of the critical 
point. In order to take into account the cusp-like boundaries we employ ‘non-linear’ 
scaling by setting 

x = anx’ y = ay’ ( 5 )  

where n is an extra new exponent, which assumes the value 2 for parabolic boundaries. 
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Starting from the partition function 

zN(W)=ZN(O)n(1-w/Wr) 
r 

we have for the internal energy, as shown by Abe, as N + CO, with p = 1/ kT, 

whence the specific heat is 

g(x, Y )  - -(p$)211 d x d y  (w,+x+iy - w ) ~ '  N k -  N ( ' G )  ? ( w - w r ) '  
C 1 d w 2  _- _ _  

Using the fact that zeros occur in conjugate pairs, the expression for the specific heat 
becomes, with U = x + w, - w, 

Now make the non-linear scaling substitution ( 5 ) ,  with a identified as w - w,, so the 
specific heat divergence of the LHS is of order UP. Then up to a constant factor, the 
singular parts in (9) are 

[( 1 + afl-'X')2-y'2] 
[( 1 + a"-Ix')2+ y'212' 

- - II dx' dy' a"-'g(a"x', ay') 

Next we require the combination 
[(l+a"-'x')2-y'2] 
[(  1 + a"-'x')2+ y'2]2 

aa+"-'g( a"x', ay') 

to be independent of a for small a, in the sense that the derivative of this expression 
is zero, as a + 0. Differentiate (1 1) with respect to a, equate the result to 0, reintroduce 
x and y via ( 5 )  and rearrange to obtain 

ag ag ( a + n - 1 ) g ( x, y ) + nx - + y - 
ax ay 

[ (x+  a)' -3Y2)1 
[(x+44-Y4)1 

= g(x, y)2(n - l ) x ( x + a )  

If n = 1, as in the linear case discussed by Abe, the RHS vanishes immediately. When 
n f 1, we examine the behaviour of the RHS along a 'scaling line' x = cy", where 
x/y = cyn-' is 'small' near a critical point on the real axis, so x<< y. Now the RHS is 
approximately 

g(x, Y M n  - 1)3X2/Y2 
which is 'small' compared with all the terms on the LHS. So we we are left with a 
partial differential equation for the density of zeros: 

ag ag 
ax ay 

(a + n - l ) g +  nx-+y-=O. 

If we set a = 0, and n = 2, we regain the differential equation (4) satisfied by the Ising 
model density of zeros. 
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4. Distributions of zeros 

The general solution of (13) is 

Then the integrated density of zeros is 

The natural 'scaling lines' are x = cy", so we introduce a scaling variable u = x/y".  
The integrand can be expressed in terms of the scaling variable U, so 

g ( y ) = y ' - "  / u ' d u f ( u ) a g l - u .  U1 (16) 

The two-dimensional problem is thus reduced to an effectively equivalent one- 
dimensional one of the same form as discussed previously by Abe. 

Some heuristic generalisations can easily be constructed. For example, for y > 0 
w i t h O < m < l , s e t  

The cusp boundaries are at u1 = x,/y" = A ,  and u2 = x2/y" = A 2 .  Again introducing the 
scaling variable U = x/y", the integrated density of zeros becomes 

g (y )  = d x  g(x, y )  = ??I-'" j u 2  duf (u ) .  
U I  

The corresponding specific heat exponent a is now nm, so setting n =  1 and m = a  
yields the linear wedge case considered by Abe. 

A further possible similar generalisation of the density of zeros is 

In any case where the cusp or wedge boundaries are at x I  and x2,  integrating across 
the cusp gives 

= h(y)[(x2 - x1)/2]-"B(1/2 - m/2,1/2). (20) 

A Y )  h(Y )Y - n m  (21) 

If the cusp boundaries are at x I  = Aly"  and x2 = A2y", then 

where one could choose h ( y ) a y ,  as before. 
If in the Ising model density of zeros (1 1, we set X = -x and Y = y 2 ,  we have 

Y dx dY 
g(x'y) dx d y = 4 ~ 2 [ d e t  B(X-A2y2)(Aly2-X)]"2 

- d x d Y  - 
8.rr2[det B ( X  - h 2 Y ) ( A I  Y-X)]"' 
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which has a ‘linear’ cusp, or  wedge, like the cases considered by Abe. X and Y are 
the ‘natural’ variables which arise in the quadratic forms associated with the density 
of zeros for the Ising model, as discussed by Stephenson and Couzens (1984) and 
Stephenson (1986). Of course the physical nature of the transition is unchanged, so 
it is likely this result is only a mathematical curiosity. 

5. Discussion 

We discuss briefly some of the ways in which non-linear scaling may be of technical 
importance. So far we have considered only partition function temperature zeros in 
the absence of a magnetic field. It is now necessary to extend the theory to incorporate 
magnetic field (Yang-Lee) zeros. It would also be interesting to examine the theory 
of zeros of correlation functions, particularly in cases where the zero distributions are 
two dimensional. Such developments have already been made by Abe (1967) and 
Suzuki (1967 j for one-dimensional zero distributions. 

In general the scaling theory of phase transitions has been carried out in the context 
of real physical variables, such as the temperature and the interaction strengths, 
magnetic field, etc, and  extension to complex variables has been made by formally 
extending the real variables into the complex plane, making the tacit assumption that 
the thermodynamic functions have the same formal functional features in the complex 
plane as they had in the original real variable. Although such an  assumption is entirely 
reasonable with regard to the analytical properties of the thermodynamic functions in 
question, our results show that the assumption fails with respect to the analytical and 
scaling properties of the densities of zeros, at least in the particular case of the 
temperature zeros of the two-dimensional Ising model. In fact the density of zeros is 
not an analytic function of a single complex variable, but of the real and imaginary 
parts separately. This is evident for the specific example of the Ising model from the 
critical region formula ( 1 )  and from a general expression for the Ising model density 
of zeros recently derived by the author (Stephenson 1987) and also for some other 
exactly soluble models previously analysed by Suzuki (1967). In other words, the 
scaling transformations, which mathematically describe the physical scaling process, 
are also not functions of a single complex variable, but of the real and  imaginary parts 
separately, which can then scale differently, via what we have termed ‘non-linear’ 
scaling. 

The geometrical consequences of non-linear scaling are mainly evident in the 
cusp-like approach of the ‘scaling lines’, and the associated boundaries, to the critical 
point(s) on the real axis. This has immediate practical consequences for the location 
and estimation of critical points from partition function zeros. Some authors (e.g. Abe 
1967, Katsura 1967, Ono et a1 1967, 1968, 1969, Suzuki 1967, Abe and  Katsura 1970) 
have calculated partition function zeros numerically, typically for small finite lattice 
systems, and have then attempted to extrapolate these zeros geometrically in the 
complex plane in order to locate the critical point. Obviously such extrapolation 
methods could be quite misleading, and seriously in error, if the wrong geometry for 
the scaling lines were assumed. For example, a linear extrapolation would be most 
inappropriate for the two-dimensional Ising model. However, it seems that often zeros 
approach the real axis ‘vertically’, or ‘at right angles’, which assists the extrapolation. 
(For examples of a similar nature on other models, refer to Rammel and Maillard 
(1983) and Martin and Maillard (1986).) Nevertheless, a more systematic extrapolation 
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procedure, involving numerical analysis of the locations of the zeros in the vicinity of 
the critical point, would generally involve making some assumptions about the 
geometrical form of the approach to the real axis. For example, one could assume a 
linear or a quadratic form for the scaling lines and boundaries, or a more general form 
described by an (unknown) exponent like our ‘n’, which could then be determined 
numerically, along with the critical point, during the extrapolation procedure. 

Moreover, awareness of the possibility of non-linear scaling of zeros occurring in 
the vicinity of a critical point could be of considerable importance in any systematic 
(numerical) study of the ‘movement’ of zeros under finite lattice ‘renormalisation’ type 
transformations, which have been made (e.g. by Derrida and Flyvbjerg 1985, Wood 
1985, Wood and Turnbull 1986) for the king and other lattice models. 

Of course we are not yet in a position to be able to predict the nature of zero 
distributions in the neighbourhood of critical points for a lattice model purely on the 
basis of (the spin-space ‘dimension’ and symmetries of) its Hamiltonian or the lattice 
type and dimension. But for certain soluble models, and for models which are known 
to obey scaling and for which the critical exponents are known exactly, or have been 
estimated numerically by series expansion or renormalisation group techniques, we 
can make some plausible suggestions as to the types of distributions which can be 
expected to occur (refer also to Suzuki (1967)). 

In the model zero distributions considered in this paper, the ‘non-linear’ scaling 
aspects of the full two-dimensional zero distributions are immediately integrated out 
when one calculates the thermodynamic functions (in a good approximation, the nature 
of which gives cause for further study elsewhere) using the integrated density of zeros. 
So one would not immediately expect non-linear scaling to have any direct physical 
consequences. Of course this may not be the situation for other models. In any case 
one may expect that non-linear scaling will play a role in the understanding and 
construction of theories and models in the context of critical phenomena in statistical 
physics, with subsequent possible ramifications for other branches of physics, wherever 
distributions of partition (and other) function zeros are of interest. 

6. Summary 

We have found that in order to fit the Ising model density of zeros into the scaling 
context, one has to use ‘quadratic’ scaling and to scale the real and imaginary parts 
of the relevant complex variable differently. For a general specific heat exponent, the 
two-dimensional density of zeros satisfies a linear homogeneous partial differential 
equation, which can be derived by applying non-linear scaling to the singular part of 
the specific heat. 
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